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Abstract

Portfolio optimization usually struggles in realistic out of sample contexts. I de-

construct this stylized fact comparing historical estimates of the inputs of portfolio

optimization with their subsequent out of sample counterparts. I confirm that his-

torical estimates are often very imprecise guides of subsequent values but also

find this lack of persistence varies significantly across inputs and sets of assets.

Strikingly, the resulting estimation errors are not entirely random. They have pre-

dictable patterns and can be partially reduced using their own previous history. A

plain Markowitz optimization using corrected inputs performs quite well, out of

sample, namely outperforming the 1/N rule. Also the corrected covariance matrix

captures the risk of optimal portfolios much better than the historical one.

JEL classification: G11; G12; G17.

Keywords: Portfolio optimization; estimation error; covariance matrix; risk man-

agement.



1. Introduction

“Those who cannot remember the past

are condemned to repeat it.”

George Santayana, The Life of Reason

The entire field of asset pricing is built on the foundation of modern port-

folio theory laid out by Markowitz (1952). Markowitz shows how an investor

with mean-variance utility should form portfolios given the expected returns on

a set of assets and the respective covariance matrix. In a more realistic setting

though, investors have to make their portfolio decisions in a context of uncertainty,

with estimates learned from a sample instead of the true inputs (Detemple (1986),

Dothan and Feldman (1986), and Brennan (1998)). It is well documented that the

resulting estimation errors pose serious challenges to anyone pursuing the poten-

tial benefits of optimal diversification (e.g. Jobson and Korkie (1980), Michaud

(1989)).

The implications are far reaching. A prominent line of research in asset pricing

consists on searching new factors with significant alphas with respect to other

previously known sets of factors. That discovery, when successful, shows that

there is some ex post linear combination of the new factor with the old ones that

improves the risk-return trade-off of the overall portfolio (in terms of Sharpe ratio).

The state of the literature on portfolio optimization suggests finding that same

combination ex ante is far from straightforward. This raises the real possibility

that an investor endowed with knowledge of some newly found priced factor does

not necessarily achieve any improvement in his overall portfolio, at least in feasible
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optimization conditions.

The empirical challenge of portfolio optimization has spurred considerable re-

search addressing the limitations of the initial Markowitz method. Still, DeMiguel et al.

(2009b) show that in a demanding out-of-sample (OOS) environment, using only

information available in real time, such optimized portfolios struggle to outperform

simple benchmarks such as the 1/N allocation rule.1

The present paper proposes an alternative approach to OOS tests. In typical

OOS tests, inputs are estimated from an historical sample, for example a window

of the previous 60 months. The optimal portfolio is chosen in month t with inputs

estimated from months t− 60 to t and its subsequent performance in month t+ 1

recorded. The following period the procedure is re-iterated, with the historical

sample rolled over one period, from months t − 59 to t + 1 and a new portfolio

formed for month t+ 2. The motivation for this paper starts from observing that

the OOS errors in these tests are recorded but not used in subsequent estimations,

they are implicitly thrown away. After a long history of (usually large) OOS

errors these should be of some use to correct the estimates obtained only from

the historical sample. I examine this possibility and find that such correction

has the potential to attenuate many of the well known limitations of portfolio

optimization. In fact, the plain Markowitz method works quite well, OOS, once

given the corrected inputs.2 The correction only uses past OOS errors that could

1Some dismiss such OOS tests claiming they also benefit from hindsight and as such they are
not necessarily preferable to in-sample tests. In my view, the claim about hindsight is likely true
but its logic consequence should be exactly the opposite: OOS tests understate the real extent
of uncertainty surrounding the portfolio decision. As such, resorting to these pseudo-OOS tests
is the very least one should do when testing optimal strategies. In a sense it is encouraging to
note the often dismal performance of optimized portfolios in those tests. It suggests they do not
belittle true uncertainties, at least to implausible extremes as their in-sample counterparts do.

2Other methods that improve on the plain Markowitz optimization could in principle achieve
even better results with the corrected inputs, that is a question outside the scope of the present
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be known in real time, so it is still an OOS method. While an extensive research

documents the existence of large OOS errors, to the best of my knowledge this

is the first paper that makes explicit use of those errors to improve the portfolio

allocation decision.

The benefits of the resulting corrected covariance matrix are particularly sig-

nificant for risk management. In an OOS exercise with the 50 largest stocks by

capitalization, the mean-variance optimal risky portfolio (MV) has losses exceeding

the 1% VaR approximately 40% of the months. This provides an extreme exam-

ple of the substantial bias in risk estimates obtained from the historical sample.

The hypothetical investor represented in this OOS test has to be endowed with an

heroic persistence in the face of dis-confirming evidence: he continues estimating

risk the same way month after month without ever correcting the large distance

between his in-sample risk estimates and the respective ex post realizations. In

sharp contrast, the corrected covariance matrix produces risk estimates very close

to actual OOS risk. For example, losses exceeding the 1% VaR only happen in

1.33% of the OOS observations. This illustrates well the potential of correcting

past OOS errors for risk management.

Past OOS errors in the inputs of optimization should be of no particular use

if they had no structure. But it turns out they have a pattern that makes them

predictable to some extent. Figure 1 illustrates the main stylized fact about the

inputs of portfolio optimization for individual stocks.

[Insert figure 1 near here]

Suppose an investor uses the Fama and French (1993) risk factors to model the

version of this paper. I simply show that the pioneer version of portfolio optimization, with all
of its known limitations, performs reasonably well with inputs corrected for past OOS errors.
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risk and expected return of a set of stocks. He estimates in a historical sample the

betas of each stock with respect to each factor, their alphas and the correlation of

residuals between all stocks in the universe. But as the figure shows all of these

inputs regress considerably to the mean in the subsequent out of sample period.

Some of these patterns are well known. The mean regression in the betas is

reminiscent of the results in Vasicek (1973), that of expected returns is known at

least since Bondt and Thaler (1985). The fact that future alphas are nearly unre-

lated to their historical estimates should be expected by even the most lenient form

of market efficiency. But surprisingly, the classic approach to portfolio optimiza-

tion relies exactly on simply plugging the historical estimates in the optimization

problem. Graphically, this amounts to expect the ex post values to lie on the 45

degree line with respect to the historical estimates. The simple patterns presented

in figure 1 clearly advise otherwise.

Some optimization inputs are reasonably close, on average, to their past values

(such as variances), while others mean reverse (e.g. stocks with above average

alphas in the past tend to have below average alphas OOS). These stylized facts

suggest a correction specific to each input based on its past reliability. I call this

the Galton correction after Sir Francis Galton, who first proposed the concept

of regression to the mean, the most recurrent in the data (Galton (1894)). This

correction provides a simple and flexible method to estimate the covariance matrix

of a set of stocks and also filters out most of the noise in estimating mean returns.

Besides individual stocks, I also examine the OOS persistence of optimization

inputs in other four sets of test assets. Each set of test assets is composed of

25 double-sorted portfolios on stock characteristics (e.g. operating profitability

and investment, the two new factors of Fama and French (2015)). Interestingly,
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different sets show different patterns of predictability. Generally, past returns tend

to be much more informative about future returns than for individual stocks. As

such the Galton correction produces more impressive results than for individual

stocks (in terms of Sharpe ratio).3 For example, in the set of portfolios sorted on

size and momentum, the annualized Sharpe ratio of the optimized portfolio OOS

is 1.37, versus 0.54 for the 1/N benchmark. On average across the four sets of

assets considered the Sharpe ratio improves 80% on the 1/N rule. This illustrates

the flexibility of the Galton correction. It filters out most of the information on

expected returns in individual stocks (where it is mostly noise) but retains it in

other test assets where it matters (as portfolios of stocks sorted on characteristics).

This work is related to a recent literature that proposes robust optimization

methods. DeMiguel et al. (2009a) show that imposing constraints on the vector of

portfolio weights substantially improves OOS performance. Brandt et al. (2009)

use asset characteristics to model weights directly, avoiding the issue of estimating

both expected returns and the covariance matrix altogether. These two methods

have one trait in common: they circumvent the issue of estimation error in the

covariance matrix and focus instead on the final output of the optimization process:

the portfolio weights. However, even if an investor is successful in estimating in

real time sensible portfolio weights (quite a non-trivial task), he is still left with

the problem of managing and estimating the risk of that portfolio. Comparatively

this work focuses more on the estimation of the covariance matrix and using it for

estimating risk.

3The optimization with individual stocks does not use any of the abundant evidence on
the predictability of stock returns in the cross section (see for example Harvey et al. (2015),
Green et al. (2013), and Lewellen (2014)). Therefore with individual stocks the most impressive
gains are in risk management. Stock portfolios formed on characteristics already benefit from
some return predictability in the cross section and so their gains go beyond risk management.
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Correcting the inputs for past OOS errors can be seen as a form of shrinkage.4

In that sense, this paper is related to a vast literature on portfolio methods that

rely on Bayesian approaches to estimation error (Barry (1974), Bawa et al. (1979),

Jobson and Korkie (1980), Jobson and Korkie (1981), Jobson et al. (1979), Jorion

(1985), Jorion (1986)). It is also related to the literature on shrinking the esti-

mation error of the covariance matrix (Best and Grauer (1992), Ledoit and Wolf

(2004a), Ledoit and Wolf (2004b), Disatnik and Benninga (2007)). Generally that

literature shows that one effective way to reduce the estimation error in the covari-

ance matrix is to shrink the estimates to some target. The exact target to chose and

the extent of shrinkage to apply is a matter of ongoing research (Benninga (2014),

Ledoit and Wolf (2014)). By comparison, there is no arbitrarily chosen prior in

this paper and the amount of “shrinkage” is specific to each input (variances, cor-

relations, expected returns) and each set of assets. I just let the data speak for

itself and chose the adjustment in inputs that would most reduce past OOS errors.

My results suggest any seemingly appropriate target is illusive: persistence varies

according to the set of assets and the input variables considered.

The paper is organized as follows. Section 2 takes a closer look to the evidence

on regression to the mean in the inputs of Markowitz optimization. Section 3

proposes the method to correct for past OOS errors in the inputs and explains

the construction of the alternative portfolio strategies. Section 4 shows the OOS

performance of optimized portfolios with the largest 50 stocks by capitalization.

Section 5 examines the predictability of the risk of those optimal stock portfolios.

4This happens with the examined sets of assets because the most recurrent pattern is regres-
sion to the mean. Therefore the cross-sectional differences in the corrected inputs are smaller
than the initial estimates. In general, correcting for past OOS errors in inputs does not forcefully
result in shrinkage per se.
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Section 6 shows the results of a bootstrap of 1000 simulations of similar sequences

of samples of 50 stocks randomly drawn every 12 months from the 500 largest

firms by market capitalization. Section 7 examines the usefulness of the Galton

correction on portfolios sorted on size, book to market, operating profitability,

investment and other characteristics. Section 8 concludes.

2. Regression to the mean in optimization inputs

The Markowitz (1952) approach shows how to solve for the optimal weights of

a portfolio given the information on the expected returns of the assets available

and the respective covariance matrix. The vector of relative weights of the optimal

risky portfolio is:

wt =
Σ−1

t µ

1NΣ
−1

t µ
(1)

where µ is a N-by-1 vector of mean returns, 1N is a N-by-1 vectors of ones, N

is the number of assets, and Σ is the covariance matrix.5 The inputs to solve the

optimization are unknown in practice and have to be estimated. As DeMiguel et al.

(2009b) mention, the classic “plug-in” approach solves this problem replacing the

true mean and variances by their sample counterparts in some rolling window. In

one out-of-sample testing framework, where the weights must be determined using

only information available to each point in time, this amounts to estimating the

inputs µ̂ and Σ̂ in the historical sample. Implicitly, the approach relies on the

strong assumption that historical sample moments offer the best estimate of their

true unobservable counterparts. Throughout this paper, I call this the historical

5In the results in the empirical sections I divide by |1NΣ−1

t
µ|. This prevents the cases when

the negative denominator switches the sign of the relative weights in the complete portfolio.
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(or plug-in) method and denote the respective estimates as µH and ΣH .

Goyal and Welch (2008) show that OOS the historical mean performs quite well

predicting the equity premium when compared to most alternative methods based

on predictive regressions. So it is not the general case that using the moment from

a historical sample results in poor OOS estimates. But in the case of portfolio

optimization, it is well known that historical estimates are plagued with large

sampling errors (e.g. Michaud (1989), Kan and Smith (2008)) and hence result in

poor OOS performance (DeMiguel et al. (2009b)). This motivates a comparison

of the inputs of Markowitz optimization in historical samples with their ex post,

out-of-sample, counterparts.

[Insert figure 2 about here]

Figure 2 shows the relation between the historical sample and the ex post

periods for the entire universe of US stocks. This figure is similar to figure 1 above,

but focuses on the more general case of estimating risk and returns without any

particular risk model. Given the large number of asset pricing models available in

the literature today, I choose to focus on this agnostic approach where no model

is assumed as the truth and the optimization simply relies on past correlations

and variances.6 For each period and variable, the observations are sorted into

deciles according to their values over the previous 60 months. The y-axis shows

the average value for each decile in the subsequent 12 months.

It is apparent that past covariances and correlations are positively related to

their future counterparts, but the slope is clearly below one. This shows that

assuming the past value is the correct estimate, as in the historical approach, is

6The correction proposed in this paper could be equally implemented with a factor model
though.
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on average excessive. But it also shows it should be sub-optimal to assume past

correlations are best forecast by their cross section mean, as is the case in the

constant correlation matrix of Elton and Gruber (1973). The slope of the OOS

values is clearly not zero either.

Panel C shows the variances are relatively well approximated by their past

values. Panel D shows there is mean reversion in mean returns (a result known

at least since Bondt and Thaler (1985)). So µH is actually negatively correlated

with true expected returns. Given this result, it is not surprising that the GMV

portfolio tends to outperform the MV portfolio OOS. Besides pervasive estimation

error issues, the MV portfolio (estimated using the plug-in approach) in effect

tends to overweight stocks with low expected returns and short those with high

expected returns.

Table 1 presents the results of Fama and MacBeth (1973) predictive regres-

sions for covariances, correlations, variances, and mean returns on their historical

estimates. For each month, I run a regression of ex post OOS values on their re-

spective historical estimates. This regression draws power from a very large cross

sample. For instance, a set of N assets has N(N-1)/2 covariances. This implies,

as the last row of the table shows, that the cross section of covariances is quite

large, its maximum number of observations exceeds six million. Usually, the large

number of covariances to estimate is pointed out as a limitation of optimization

methods. But in this regression exercise, it is quite the opposite. The large cross

section leads to a more accurate estimation of the correction to make.

[Insert table 1 about here]

The reported slopes and t-statistics are inferred from the time series averages
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of the Fama-MacBeth regression coefficients. For covariances, correlations, and

variances the null hypothesis that the slope is zero (no predictability in the variable)

is clearly rejected with t-statistics of 10.03, 21.44, and 11.07 respectively. The

hypothesis of a slope of zero is rejected at the 5% level in every cross section

regression for the covariance and correlation, and in 98.18% of the regressions for

the variance. This strongly suggests optimization could do better than just using

the constant correlation matrix of Elton and Gruber (1973).7

On the other hand, the null hypothesis that slope coefficients of these variables

are one (implying the historical approach is correct on average) is clearly rejected

too. The t-statistics for covariances, correlations, and variances are, respectively,

-17.12, -71.16, and -8.01. This is illustrative of the problems of the plug in approach

that implicitly assumes a value of one for the slope (and zero for the intercept). In

the case of mean returns, the slope coefficient is also significantly negative with a

t-statistic of -4.83.

For covariances, correlations, variances, and mean returns, it is striking how

almost all regressions reject the null hypothesis of a slope of one. This shows an

hypothetical investor following the plug in approach should rapidly realize there

is something wrong with his estimates. For most variables, one single regression

of ex post values on ex ante historical inputs would be enough to strongly suspect

of the existence of regression to the mean.

All in all, this section shows there is a clear regression to the mean in the

covariance matrix. The best estimate for the future correlation between a pair of

7For correlations, the R-square of the regression is quite low (only 1.59%). This shows that
making inference with a relatively small number of assets, as in Elton and Gruber (1973), the
constant correlation matrix should provide a very good approximation. By contrast, the high
statistical significance of the slope coefficient in my results benefits from much larger cross section
of pair-wise correlations.
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stocks is somewhere between the past correlation of the same pair of stocks and the

mean correlation between all pairs of stocks. In the case of mean returns, there

is even mean reversion. Those stocks the historical approach estimates to have

high-expected returns assets, are in fact, on average, those with lower expected

returns.

3. Correcting past out of sample errors

The previous section shows there are large differences between historical esti-

mates of the optimization inputs and the values they assume on average OOS. But

those differences are also consistent and predictable to some extent. For instance,

above average historical correlations tend to become smaller OOS8. This leads to

the possibility that correcting past OOS errors in the inputs can lead to more

robust portfolio optimization.

Typical OOS tests use either an expanding or a rolling window, with obser-

vations up till time t, to produce a forecast for time t + 1. Then this forecast is

compared with the value observed at time t+ 1 and the corresponding OOS error

is recorded. The following period the estimation window is either rolled over or

expanded one period and a new forecast is produced for time t+ 2. But this fore-

cast still only uses the in-sample information to produce the forecast. It ignores

the OOS error obtained in the previous period, it is implicitly discarded. The

approach proposed here consists in using those OOS errors to improve forecasting.

For any individual variable of interest X (variance, pairwise correlation, or

8This does not imply that there is some break in true correlations between the in-sample and
the OOS period. Even if all true correlations are the same and do not change, some pairs of
stocks should have high (small) sample correlations by randomness and this bares no information
about their subsequent correlations.
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mean return) let XH,t denote its historical estimate at time t computed from a

rolling window of H observations. The value it assumes in a subsequent ex post

window of E months is denoted by XE,t. The results shown throughout this paper

are for H = 60 and E = 12 (note that XE,t only becomes known at t+ E).

For each period t in the sample, I run the cross-section regression:

XE,t,j = g0,t + g1,tXH,t,j + ǫt,j (2)

for j = 1, ..., Nt, where Nt is the number of stocks available in the sample at time

t. If the historical approach is correct, the best estimate of XE,t is XH,t and so

g0,t = 0 and g1,t = 1. If regression to the mean is total, the best estimate of XE,t

is the cross section average, so E(XE,t,j) = g0,t and g1,t = 0.

The history of cross sectional estimates ĝ0,t and ĝ1,t can be used to form a

corrected expectation of XE,t,j, which I denote as XG,t,j:

XG,t,j = Ḡ0,t−E + Ḡ1,t−EXH,t,j (3)

where Ḡ0,t−E =
∑t−E

s=1
ĝ0,s/(t−E) and Ḡ1,t−E =

∑t−E
s=1

ĝ1,s/(t−E). This estimate,

XG,t,j, is the historical estimate, XH,t,j, corrected by how close (or how far) all

known past historical estimates were of their subsequent OOS values (XE,t,j). It

is totally agnostic about the data generating process and the distribution of OOS

errors. It consists in a linear correction of past OOS errors. Other more sophis-

ticated methods would likely produce better corrections, but I refrain from that

pursuit and focus instead on a straightforward linear function for its simplicity.

As XG,t,j only uses information available until time t, it can be used for OOS
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tests. The correction should become more accurate as more past OOS errors are

available. As such, besides the usual initial in-sample period needed in OOS tests,

the results in this paper require one additional learning period (L) to correct for

past OOS errors. Given this, the first truly OOS return for a strategy using XG,t,j

will occur at time H + L + E + 1. I pick an arbitrary initial period (L) of 120

months for the correction. For the chosen values of H , L, and E that amounts to

193 months.9

Using the correction above, I compute corrected inputs for the Markowitz op-

timization. The corrected correlation matrix, ρG,t, has in each entry the corrected

pairwise correlation and ones in the diagonal. Similarly, I obtain the N-by-1 vec-

tor of corrected estimates of the variances, σG,t, and mean returns, µG,t. The σG,t

is restricted to be strictly positive to machine precision. The Galton corrected

covariance matrix is:

ΣG,t = diag(σG,t)
1

2ρG,tdiag(σG,t)
1

2 (4)

From this the weights of the Galton mean-variance (MV) portfolio are:

wMV
G,t =

Σ−1

G,tµG,t

1NΣ
−1

G,tµG,t

(5)

Similarly, the Galton global minimum variance (GMV) portfolio is:

wGMV
G,t =

Σ−1

G,t1N

1NΣ
−1

G,t1N
(6)

9Please note that after the initial learning period, for a given set of assets, the only requirement
is to have H past observations. The method ‘learns’ from past OOS errors of similar assets. It
does not require a record of past observations of 193 months for every asset.
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The weights of these portfolios do not use any information about the character-

istics of the stocks and are not adjusted ex post to respect any constraints. They

are simply the result of the plain Markowitz optimization applied to the corrected

inputs. I compare the results of these two portfolios with the MV and GMV ob-

tainable using the historical approach and the also the Elton and Gruber (1973)

constant-correlation approach.

In the Elton and Gruber (1973) constant correlation approach, ρEG,t consists of

a matrix where the non-diagonal elements are the average of pairwise correlations

in the rolling historical sample and the diagonal elements are all ones. Then the

covariance matrix is:

ΣEG,t = diag(σH,t)
1

2ρEG,tdiag(σH,t)
1

2 (7)

and σH,t is the N-by-1 vector of estimated variances from the historical sample.

The GMV portfolio of the Elton-Gruber approach is determined as in equation

6 but with ΣEG,t instead of ΣG,t. Assuming that ΣEG,t is a reasonable estimate

of the covariance matrix, I combine it too with µH,t to obtain the weights of a

Elton-Gruber MV portfolio.

Besides these four portfolios, I also compare the two Galton-corrected portfolios

with the 1/N benchmark that DeMiguel et al. (2009b) show compares favourably

with most optimization methods.
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4. The OOS performance

The dataset consists of monthly returns of the entire universe of US listed stocks

on the Center for Research in Security Prices (CRSP). The monthly returns data

start in 1950:03 and end in 2010:12. At the start of the sample I pick the 50 stocks

with the largest market capitalization with a complete history of returns in the

previous 60 months and the subsequent 12 months. The set of stocks is kept fixed

for 12 months and then renewed each 12 months until the end of the time series.

For the OOS exercise, one initial period of 193 months is needed, this implies that

the first OOS return is in 1966:04. Also, the requirement of a subsequent history

of 12 months means that no OOS returns can be computed for the last 11 months,

so the OOS period is of 526 monthly returns from 1966:04 to 2010:01. So in total

43 universes of 50 stocks are sequentially chosen in the OOS period, one for each

year (526/12 = 43.83).

Table 2 shows the OOS performance of the 6 portfolios. The historical GMV

portfolio has a Sharpe ratio of 0.19, below the 1/N benchmark. The historical MV

has a negative Sharpe ratio of -0.14 and a very high excess kurtosis of 515.78. This

is illustrative of the well known problems of Markowitz optimization, at least when

using the classic plug in approach. The simple 1/N portfolio compares favourably

with historical approach with a Sharpe ratio of 0.29. This confirms with portfolios

of individual stocks the result DeMiguel et al. (2009b) obtain with industry and

size / book-to-market sorted portfolios.

The Elton-Gruber GMV portfolio has a very interesting performance, with a

Sharpe ratio OOS of 0.45, more than 50% higher than the 1/N. But the Elton-

Gruber MV has a very poor performance, with a Sharpe ratio of -0.15 and, more
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importantly, with an extremely high standard deviation of 1224.86. Both the

Galton methods, the GMV and the MV, perform well with Sharpe ratios of 0.48

for the GMV and 0.43 for the MV, 65% and 48% higher than the 1/N benchmarks,

respectively. Most strikingly, the method achieves sensible ex post volatilities of

12.71 (GMV) and 18.68 (MV).

5. The predictability of risk of small stock port-

folios

Institutional investors often have relatively concentrated stock portfolios. Agarwal et al.

(2013) show that the Herfindhal index of a typical mutual fund stock portfolio is

0.018 and that of a hedge fund is 0.047. This implies that the equivalent num-

ber of holdings, defined as the reciprocal of the Herfindhal index, is respectively

56 and 21 stocks. This concentration of the bulk of a portfolio in a relatively

small set of securities can seem inefficient from a diversification perspective, but

Kacperczyk et al. (2005) show it is associated with superior performance once con-

trolling for risk. So relatively small stock portfolios are important for institutional

investors and perhaps for good reasons. To manage the risk of those portfolios,

whatever the information set used to estimate returns - factors, characteristics,

or privately produced fundamental analysis -institutional investors always need a

reasonable estimate of the covariance matrix on its own merits, not just to pick the

weights of the optimal portfolio. This should be particularly relevant to estimate

the value-at-risk (VaR) for extreme quantiles of the distribution, particularly in

the case of hedge funds pursuing long-short strategies.
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The search of robust mean variance portfolios in OOS tests has received consid-

erable more research efforts than the predictability of risk of those same portfolios.

Yet, according with the two-fund separation theorem, in a conventional Markowitz

setting, a hypothetical investor solves the allocation problem in two steps: i) iden-

tify ex ante the tangency risky portfolio; ii) determine the allocation of wealth

between the tangent portfolio and the risk free rate depending on the portfolio’s

risk and his preferences. The first step has received a lot of attention, and the dif-

ficulties of finding the mean-variance efficient portfolio in a realistic OOS setting

are well documented. There are successful methods available that achieve robust

OOS performance in terms of Sharpe ratio (Brandt et al. (2009), DeMiguel et al.

(2009a), Kirby and Ostdiek (2012)). But even if an investor is able to solve the

first step using one of those methods, he is still left with the problem of how to

estimate, ex ante, the risk of his chosen portfolio. For that second step, it does

not matter if the standard deviation of the optimal portfolio is high or low, but it

does matter if it is predictable.

Basak (2005) show that using the historical method to estimate the risk of the

GMV results in a dramatical understatement of its true risk OOS. Also, assuming

a multivariate normal distribution, Kan and Smith (2008) show analytically that

historical estimates of the risk and mean return of the GMV portfolio are system-

atically overly optimistic. Below, I examine this problem in an OOS setting with

real stock data and add to the historical sample estimation two other methods: the

constant correlation matrix of Elton and Gruber (1973) and the Galton correction

using past OOS errors.

[Insert table 3 near here]
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Table 3 shows the ex ante risk of each of the portfolios and the respective ex

post OOS risk. An investor wary of the fact that mean returns are difficult to

estimate might decide to follow the advice of Jobson et al. (1979) and pursue a

GMV strategy. This investor would be quite surprised to see that the strategy,

in real time, has about 7 times the risk he anticipates. The ex ante standard

deviation of the historical GMV is of 3.60 percentage points (annualized) but the

ex post standard deviation of the strategy is 26.50.

The problem is even worse for the historical approach MV portfolio with an

OOS risk 113 times higher than the ex ante estimate. A hypothetical investor fol-

lowing the historical approach to estimate risk should soon conclude there is some-

thing wrong with his estimates. A clear illustration of this is that 39.67 percent of

the OOS returns are losses exceeding the investor’s ex ante estimate of the 1% level

value-at-risk (VaR). This is particularly disturbing from a regulatory perspective

as the vast majority of commercial banks rely on historical simulation methods

to estimate value at risk (Perignon and Smith (2007), Pérignon and Smith (2010))

and they feature prominently in regulations (see e.g. EMIR). This result shows

that for some portfolios, designed to obtain an optimal risk-return trade-off in a

historical sample, past hit rates are very misleading of true OOS risk.

The Elton-Gruber constant correlation approach performs much better pre-

dicting the risk of the GMV. The standard deviation of the GMV portfolio is

15.38 ex post versus 8.85 expected ex ante. So in the case of stock portfolios,

the Elton-Gruber approach substantially reduces the dramatic problems shown

in Basak (2005) with historical sample estimates. Still, an investor in the robust

Elton-Gruber GMV portoflio, would find on average 74% more volatility OOS

than anticipated. The number of occurrences in the extreme quantiles of the dis-
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tribution is much higher than anticipated too. In the left tail, losses exceeding

his estimate of 1% level VaR would occur 5.93 times more often than anticipated,

the null hypothesis that the true hit rate is 1% is clearly rejected. For the MV

portfolio, the constant correlation matrix does not capture accurately the OOS

risk either. The standard deviation OOS is more than 7 times higher than the

ex ante estimate. So while the constant correlation matrix achieves a somehow

acceptable performance describing risk of the GMV, an investor tempted to use it

to estimate the risk of a MV portfolio would be dramatically surprised.

The third column shows the performance of the portfolios that use the covari-

ance matrix (and mean returns) corrected for past OOS errors. The most striking

result is that there is no significant difference between ex ante and out of sample

risk. For the GMV portfolio, the expected standard deviation is 15.24 percentage

points while the standard deviation in the OOS period is 12.71. So risk is actually

lower OOS than expected for this portfolio. None of the hit rates is significantly

higher than the respective target rates, two are even significantly lower in a statis-

tical sense. Even for the case of the MV portfolio, OOS standard deviation (18.68

percentage points) is very close in magnitude to the estimated ex ante (18.20 per-

centage points). Most hit rates are not significantly different than their respective

targets. So the covariance matrix corrected for past OOS errors captures well

the risk of these optimized stock portfolios. This contrasts starkly with the other

methods examined.

[Insert figure 3 about here]

Figure 3 shows the minimum variance estimates using the historical and Galton

methods for the largest stocks in the end of the sample. Panel A shows that the
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minimum variance frontier estimated with the historical approach is very close to

the y-axis and seems almost vertical when compared to the shape of the frontier

using the Galton method.10

The historical method overestimates the potential benefits of optimal risk diver-

sification. For instance, the GMV, with a 100% net exposure to the stock market,

has an estimated annualized volatility of only 2.38%. This is far less than its histor-

ical volatility. Panel B shows the minimum variance frontier with a risk free rate

asset available for the investor. The historical method estimates ex ante an annu-

alized Sharpe ratio attainable for the investor of 10.98. This should overstate by

a great extent the true risk-return trade-off available to the investor. The Galton

method by comparison estimates a Sharpe ratio of 0.62, an excessively optimistic

estimate too but one order of magnitude closer to a sensible value.

6. The result of simulations

The results in the previous section are based upon only one sequence of 43

stock universes (each universe comprising 50 stocks) covering an OOS period of

526 months. In spite of the long period, there is still significant sampling error. To

handle this I simulate 1000 such sequences of 526 months, resulting in 43,000 stock

universes with a total of 526,000 OOS returns. All returns are OOS, so within each

sequence the investor following a strategy only uses the available data up to the

month in question. The simulations use the actual OOS returns of the stocks

10As a side note, the contrast between the two methods is so extreme that it is hard to find a
scale where both share the familiar textbook shape of a minimum variance frontier. If presented
in an interval too wide the Galton method looks like a horizontal line, with a too narrow interval
the historical method produces an estimate that looks more like a vertical line parallel and almost
overlapping with the y-axis.
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in each portfolio, so they do not assume a multivariate normal distribution data

generating process as in, for example, Jobson and Korkie (1980) or Kan and Smith

(2008).

Table 4 shows the summary of the performance of these strategies in the OOS

simulations. On average the Sharpe ratio of the historical GMV is 0.24 smaller

than the 1/N strategy and it only outperforms the naive strategy in 22% of the sim-

ulations.11 The investor expects, ex ante, a standard deviation of 7.48 percentage

points, but OOS the actual standard deviation is 17.08 percentage points, more

than double his expectation. In 100% of the simulations, OOS risk (as measured

by the standard deviation) is higher than the ex ante expectation. So even if the

strategy delivers a reasonable performance, it is consistently inferior to the naive

portfolio in OOS simulations and it also surprises investors with risks substantially

higher than they anticipate.

The Elton-Gruber constant correlation matrix GMV has a Sharpe ratio very

close to the 1/N on average. In fact, in 54% of the simulations it outperforms in

this metric the naive benchmark.12 It is noteworthy that this approach to portfolio

management, proposed in 1973, has performed so well out of sample in the context

of individual stock portfolios. Still the ex-post risk of the strategy is 44% higher

on average than the ex ante estimates. Hence the constant correlation matrix

systematically underestimates the risk of the GMV.

Both the historical and Elton-Gruber mean variance portfolios show a consis-

tently bad performance OOS. The average Sharpe ratio is close to 0 and the risk

11In unreported results I found that on average the 1/N strategy loads more on the size and
value Fama-French factors than the other portfolios. This possibly contributes partially to its
consistent performance.

12All values in the second column are statistically different from 50% in two-tailed tests at the
1% level.
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OOS is more than 10 times higher the ex ante estimates from the respective co-

variance matrices. This shows that even the constant-correlation matrix has non

negligible difficulties estimating the risk of concentrated stock portfolios.

The methods that correct past OOS errors have, on average, Sharpe ratios of

0.40 (GMV) and 0.36 (MV). Both are higher than the Sharpe ratio of the 1/N

strategy (0.33). The differences in OOS performance are statistically significant

at the 1% level and the second column shows the outperformance occurs in most

simulations (85% for the GMV and 63% for the MV). While statistically significant,

the economic gains in terms of Sharpe ratio are relatively small (9% and 21% higher

than the 1/N for the GMV and the MV portfolios respectively). This should be

partially expected as the optimization intentionally ignores all stock characteristics

and these are relevant forming portfolios (Brandt et al. (2009)).

The performance of the MV portfolio is not as impressive as the GMV. This

suggests that for individual stocks the most relevant information for the optimiza-

tion is in the covariance matrix and not the vector of mean past returns.

For risk management purposes, the most relevant issue is the OOS predictabil-

ity of risk for each stock portfolio. The results show ex ante estimated risk is,

on average, 16.21 percentage points for the GMV and 18.99 percentage points for

the MV. This compares to ex post OOS risk of 14.21 percentage points and 19.72

percentage points, respectively. So the most striking result is that OOS risk is

close to the ex ante estimate when using the corrected covariance matrix. This

contrasts sharply with the historical and constant correlation approaches. Even

the MV portfolio, that shows dismal performance OOS and unpredictable risk with

the other methods, achieves to outperform the 1/N on average. This performance

is achieved without portfolio constraints or using stock characteristics.
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Table 5 shows the hit rates in the OOS period for the 1000 simulations. For

the historical and the constant correlation approaches, all hit rates for the extreme

quantiles are statistically different than the target. In fact, extreme observations

happen consistently more frequently than the ex ante risk estimate would suggest.

Generally, the problem is more pronounced in the left tail than in the right tail,

reflecting the left skewness of the strategies. Losses that should only happen 1%

of the time, according with ex ante estimation of risk, occur with a frequency

between 5.30% and 21.76% on average. This shows both historical and constant

correlation covariance matrices leave considerable scope for investors to be mislead

(or to mislead) about the true OOS risk of their stock portfolios - a conclusion with

potentially important implications for regulators and Central Clearing Counterpar-

ties.

For the portfolios using past OOS errors to correct the inputs, the hit rates

are, on average, close to the target levels. In fact, they are significantly below

the target in 4 cases (the G-GMV at 10%, 90%, 95% and the G-MV at the 90%)

and insignificantly different from the target in 6 cases. They only seem to capture

insufficiently the risk in the extreme left tail. Losses that should happen with

1% probability occur in the OOS period with 1.40% and 1.80% frequency for the

GMV and MV portfolios, respectively. This is consistent with the interpretation

that the distribution of returns is not multivariate normal. Still this is a relatively

minor deviation in the VaR estimate when compared to the other methods. This

shows that correcting the covariance matrix for past OOS errors has the potential

to improve the estimation of risk of concentrated stock portfolios, in particular in

extreme quantiles of the distribution.
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7. Optimization with characteristic-sorted port-

folios

As a robustness check, I examine the OOS performance of the Galton correction

with other test assets, namely the portfolios sorted on different characteristics in

Kenneth French’s website.

As a first remark, these test assets are very different from the individual stocks

discussed in the sections before. The characteristics used to sort the stocks into

different portfolios are intentionally chosen to better capture a dispersion in ex-

pected returns (and a corresponding factor structure in their risk). As such the

persistence in correlations, variances, and mean returns should be much higher for

these portfolios. Table 6 shows the slope of ex post OOS values of the inputs of

optimization on their ex ant estimates from the historical sample.

[Insert table 6 about here]

Generally, correlations between portfolios do not regress toward the mean as

much as for individual stocks. The slope is significantly below one only for the

double sorted portfolios on operating profitability and investment (panel B) and

those double sorted on size and momentum (panel D) but not for the others. There

is no evidence of mean reversion in returns in any of the test assets. For three of

the sets, the slope coefficient is significantly positive. Still, for all mean returns,

the slope is statistically below one, so there is prevalent regression to the mean in

returns. All of these results suggest the sorting exercises are successful in creating

a set of assets with strong structures of risk and return.
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But there are important differences in the degrees of persistence between the

sets of test assets. For instance, returns are highly predictable in the set of size

and momentum double sorted portfolios. The R-square of the regression of ex post

returns on ex ante regressions is 30.89 percentage points, the highest among the

test assets compared. The slope coefficient is also closer to unity than 0, unlike

the other test assets.

On the other extreme, the portfolios sorted on size and beta have the most

predictable risk. The slope coefficients for the covariances, correlations, and vari-

ances are all very close to one and the R-squares for each of these regressions is

the highest when compared to the other test assets. So past risk is a very good

predictor of future risk in this set of assets. On the other hand, regression to

the mean in returns is practically total. The slope coefficient for this variable is

not even significantly above zero implying that past returns are not informative of

future returns on average.

All in all, this shows that these test assets are very different from individual

stocks and also have important differences between themselves. Given that they

differ in the predictability of their risk and returns, they provide a natural test of

the flexibility of the Galton method.

[Insert table 7 about here]

Table 7 shows the results for each set of test assets. For each set of assets I use a

rolling window of 120 months to estimate the moments and correct those estimates

using past OOS errors.13 The 1/N rule produces a consistent performance in terms

of Sharpe ratio between 0.54 and 0.59, depending on the test assets. The historical

13(DeMiguel et al. 2009b) uses the same window for the Kenneth French portfolios in their
study. Using 60 months as for individual stocks does not change substantially the results.

25



GMV portfolio performs quite well with these test assets. It benefits from the fact

that the covariance matrix estimated from past data is informative about OOS risk.

But the performance of the historical MV portfolio is far from consistent across

panels. It has the worst Sharpe ratios in panels A and C, but a very high Sharpe

ratio in panel D of 1.29. More strikingly, the covariance matrix estimated with

the historical method fails substantially in estimating the OOS risk of the ex ante

tangent portfolio. In the case of operating profitability and investment portfolios,

the H-MV has an OOS volatility of 28.83 percentage points, considerably below

the ex ante estimate of 70.60. With the portfolios double-sorted on size and beta

the opposite occurs: the ex ante volatility is of 117.87 percentage points while ex

post the portfolio has a volatility of 340.01, almost three times the expected risk.

Either way, the estimates are far from ex post risk using the historical estimates

for the mean-variance optimal risky portfolio.

In these assets, the Elton-Gruber constant correlation matrix produces far from

accurate risk estimates. For example, in panel D, the EG-MV ex post risk is more

than 19 times higher its ex ante estimate. This contrasts with individual stocks

where the constant correlation approach produces sensible results. It also stresses

the need of a method to estimate the appropriate amount of shrinkage to the

covariance matrix of a set of assets. These results show that any arbitrarily chosen

shrinkage coefficient that serves its purpose with a set of test assets is likely to be

very misleading with another.

The Galton method is quite flexible and for each set of test assets it produces

sensible corrections. The Sharpe ratio of both the tangent and the minimum vari-

ance portfolios are always above the 1/N and among the best performing methods.

In these test assets past returns predict future returns in the cross section. The
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minimum variance portfolio does not use this predictability but the ex ante tan-

gent portfolio does. Due to this the G-MV always has the highest Sharpe ratio

compared to the other methods. In the case of the portfolios sorted on size and

momentum the OOS Sharpe ratio on the G-MV portfolio is 1.37, more than double

the 0.54 of the 1/N benchmark. On average across the four panels, the Sharpe

ratio of the G-MV is 80% higher than that of the 1/N. Furthermore, the respective

estimated covariance matrix produces risk estimates that are reasonably close to

ex post risk.

In conclusion, this robustness exercise shows that the benefits of the Galton

method are not specific to portfolios of individual stocks. In fact, looking at the

Sharpe ratios, the Galton optimization produces much better results with these

test assets where returns and risk show more predictability.

8. Conclusion

The historical and constant correlation approaches to the estimation of the

covariance matrix systematically underestimate the risk of optimal portfolios of in-

dividual stocks. The actual OOS standard deviation of the strategies is up to more

than 100 times higher the ex ante estimate would suggest. The problem is more

severe for the MV portfolios but is also pertinent in the GMV. This leads to a gross

mis-estimation of risk, particularly at the extreme quantiles of the distribution. In

simulations with real stock returns, losses exceeding the 1% level VaR occur in

as much as 22% of the OOS periods (for the historical MV portfolio). The ex

ante estimates of the minimum variance frontier using these methods are counter-

intuitive, going against both economic fundamentals and historical evidence on
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the risk-return trade-off.

Correcting the covariance matrix for past OOS errors dramatically reduces the

estimation problem. The ex post risk of the optimal portfolios is very close in

magnitude to its ex ante risk. For most of the extreme quantiles, the hit rates are

either not statistically different from the respective targets or even below them.

This suggests that correcting past OOS errors provides a simple method to

estimate the covariance matrix, with particularly useful applications in risk man-

agement.

In sets of assets where returns show some predictability, the Galton correction

not only achieves a more accurate estimate of risk, but also takes advantage of

that and outperforms significantly in terms of Sharpe ratio the 1/N benchmark.
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Table 1

Regression to the mean
Regression of ex post values on historical estimates. For each month in the sample

from 1955:03 to 2009:12, I regress the ex post value of some variable (computed using the

subsequent 12 months of data) on its estimate from the historical sample in the previous

60 months. The variables in the columns are: i) the pairwise covariance of stock returns;

ii) the pairwise correlation of stock returns; iii) the variance of individual stocks; iv)

the mean return of the individual stocks. The rows show the output of Fama-MacBeth

(1973) regressions of the ex post values on the historical estimates. The outputs are:

i) the average slope coefficient in the monthly regressions; ii) the Newey-West (1987)

t-statistic of the slope coefficient (computed with 12 lags); iii) the percentage of cross

sectional regressions where the slope coefficient is significantly positive in a one-tailed test

at a significance level of 5%; iv) the percentage of regressions where the slope coefficient

is significantly smaller than one in a one-tailed test at a significance level of 5%; v)

the average R-square of the regressions. Rows 6 to 8 show, respectively, the minimum,

average, and maximum number of observations in the regressions.

Covariance Correlation Variance Mean return
Slope 0.37 0.23 0.58 -0.18
t-stat(=0) 10.03 21.44 11.07 -4.83
Greater than 0 (%) 100.00% 100.00% 98.18% 18.54%
t-stat(=1) -17.12 -71.16 -8.01 -32.06
Smaller than 1 (%) 93.01% 100.00% 86.93% 100.00%
R-square 4.16% 1.59% 13.24% 2.14%
Min 371091 371091 862 862
Average 3297770 3297770 2353 2353
Max 6579378 6579378 3628 3628
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Table 2

OOS performance of the portfolio
Each twelve months I select the 50 stocks of the firms with the largest market capital-

ization for which there is a complete return history over the previous 60 months and the

subsequent 12 months. The sample is kept fixed for the subsequent twelve months. The

weights are re-balanced monthly, each month I use a rolling window of 60 months to es-

timate the covariance matrix hence obtaining the global minimum variance (GMV) and

the mean-variance (MV) portfolios for three different methods: the historical method,

the Elton-Gruber method, and the Galton method. The columns show descriptive statis-

tics of the out-of-sample performance of each portfolio. These are: i) the mean annual

return of the portfolio; ii) the annualized standard deviation of the portfolio; iii) the

excess kurtosis of the portfolio; iv) the skewness of the portfolio; and v) the Sharpe ratio

of the portfolio. The sample returns are from 1955:03 to 2010:12.

Strategies Mean STD KURT SKEW Sharpe
1/N 4.70 16.05 1.92 -0.22 0.29
Historical GMV 5.15 26.50 1.46 0.20 0.19
Historical MV -2051.12 15105.21 515.78 -22.69 -0.14
Elton-Gruber GMV 6.95 15.38 1.49 -0.10 0.45
Elton-Gruber MV -189.69 1224.86 284.40 -13.94 -0.15
Galton GMV 6.14 12.71 1.21 -0.27 0.48
Galton MV 7.95 18.68 5.83 0.54 0.43
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Table 3

Accuracy of risk estimates
The first row shows the expected standard deviation of a strategy in the OOS period

using the weights of the strategy and the respective estimate of the covariance matrix.

The second row shows the realized standard deviation of the strategy computed from

its OOS monthly returns. Both measures of standard deviation are annualized. Rows

3 to 5 show how often the strategy delivered returns smaller than the 1st, 5th, and

10th quantile, respectively, according to the ex-ante estimate of volatility and assuming

a normal distribution. Rows 6 to 8 show the same information for returns above the

90th, 95th, and 99th quantile, respectively. In the first column the variance is estimated

from the historical sample, in the second column it is estimated with the Elton-Gruber

correlation matrix, and in the third column with the Galton correction. Panel A shows

the results for the global minimum variance portfolios and panel B for the mean-variance

portfolios. The out-of-sample returns are from 1966:04 to 2010:01. All values are in

percentage points. One star denotes significance at the 10% level, two stars at the 5%

level, and three stars at the 1% level for the (two-tailed) test that the OOS hit rate is

different than the expected ex ante.

Historical Elton-Gruber Galton
Panel A: The global minimum variance portfolio
STD(expt) 3.60 8.85 15.24
STD(realized) 26.50 15.38 12.71
r<Qz(0.01) 28.72*** 5.93*** 1.52
r<Qz(0.05) 32.37*** 10.49*** 4.56
r<Qz(0.10) 34.04*** 14.13*** 7.41*
r>Qz(0.90) 32.98*** 17.63*** 4.94***
r>Qz(0.95) 31.91*** 14.44*** 2.85**
r>Qz(0.99) 28.88*** 8.51*** 0.76
Panel B: The mean variance portfolios
STD(expt) 133.52 172.95 18.20
STD(realized) 15105.21 1224.86 18.68
r<Qz(0.01) 39.67*** 15.35*** 1.33
r<Qz(0.05) 43.47*** 25.23*** 5.32
r<Qz(0.10) 45.59*** 31.61*** 7.98
r>Qz(0.90) 22.49*** 8.21 6.65**
r>Qz(0.95) 21.58*** 5.62 4.75
r>Qz(0.99) 17.93*** 3.19*** 1.14
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Table 4

Results of simulations (OOS)
Each simulation selects randomly a set of 50 stocks and uses the information available

up to each point in time to form a portfolio. It rebalances the portfolio monthly, reflecting

the update in the information available, and every twelve months selects another set of

stocks until the end of the 526 months OOS period. So a simulation comprises 43

stock universes and a total of 526 OOS monthly returns. The results are based on 1000

simulations totalling 526,000 OOS monthly returns. The first column shows the average

Sharpe ratio across the 1000 simulations for the respective strategy. The second column

shows the percentage of simulations the Sharpe ratio of the strategy was superior to

that of the 1/N strategy. The third column shows the average expected volatility of

the strategy using the ex-ante covariance matrix. Column 4 shows the actual ex post

volatility of the strategy. Column 5 shows the percentage of simulations the ex post risk

was higher than the one expected ex ante. The values in columns 3 to 5 are in percentage

points.

Strategies SR SR > SR1/N Eσ σexpost σexpost > Eσ
1/N 0.33 - - - -
Historical GMV 0.24 0.22 7.48 17.08 100.00
Historical MV 0.00 0.00 193.02 5556.97 99.90
Elton-Gruber GMV 0.34 0.54 9.90 14.25 100.00
Elton-Gruber MV 0.01 0.01 243.15 3178.35 100.00
Galton GMV 0.40 0.85 16.21 14.21 0.00
Galton MV 0.36 0.63 18.99 19.72 80.20
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Table 5

Hit rates in the OOS simulations
Each simulation selects randomly a set of 50 stocks and uses the information available

up to each point in time to form a portfolio. It rebalances the portfolio monthly, reflecting

the update in the information available, and every twelve months selects another set of

stocks until the end of the 526 months OOS period. So a simulation comprises 43

stock universes and a total of 526 OOS monthly returns. The results are based on

1000 simulations totalling 526,000 OOS monthly returns. Columns 1 to 3 show the

average hit rates of each simulation for the shown critical level (the average percentage

of observations with losses greater than the ex-ante estimated VaR). Columns 4 to 6

show the same information for hit rates above the respective critical level in the right

tail of the distribution (that is gains exceeding the respective quantile of the ex-ante

distribution). Three stars denote significance at the 1% level, two stars at the 5% level

and one star at the 10% level. All tests are two-tailed tests. The null hypothesis is that

the hit rate is equal to the respective critical level. The rows show the results for the

following portfolios: i-ii) the historical global minimum variance (‘H-GMV’) and mean

variance(‘H-MV’); iii-iv) the constant correlation matrix global minimum variance (‘EG-

GMV’)and mean variance (‘EG-MV’); v-vi) Galton corrected global minimum variance

(‘G-GMV’) and mean variance (‘G-MV’).

Strategies Hit <1% Hit<5% Hit<10% Hit>90% Hit>95% Hit>99%
H-GMV 14.58*** 22.44*** 27.70*** 25.93*** 20.84*** 13.37***
H-MV 21.76*** 31.66*** 37.80*** 19.95*** 16.10*** 10.47***
EG-GMV 5.30*** 11.15*** 16.20*** 17.24*** 11.73*** 5.39***
EG-MV 8.06*** 16.86*** 24.12*** 14.03*** 10.04*** 5.27***
G-GMV 1.40*** 4.36 7.73** 5.42*** 2.62*** 0.74
G-MV 1.80** 5.32 9.64 7.67** 4.39 1.46
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Table 6

Persistence(s) in characteristic-sorted portfolios
The test assets in each panel are 25 double-sorted portfolios on two different char-

acteristics obtained from Kenneth French’s online data library. I use a rolling window

of 120 months to estimate moments and regress the subsequent values in the following

12 months on the historical estimates. The table shows the results of Fama-MacBeth

regressions of ex post values on ex ante estimates. The first column shows the estimate

of the slope (that is, the average slope across all cross sectional regressions); column 2

shows the t-statistic for the null hypothesis of the true slope being zero; the third column

shows the t-statistic for the null of the slope being equal to 1; the fourth column shows

the average R-square of the cross sectional regressions in percentage points. In panel

A the test assets are the 25 portfolios sorted on size and book to market; in panel B

the portfolios sorted on operating profitability and investment; in panel C the portfolios

sorted on size and beta; and in panel D the portfolios sorted on size and momentum.

Slope tstat(=0) tstat(=1) R-square
Panel A: Size and value
covariance 0.83 7.18 -1.47 46.03
correlation 0.92 13.82 -1.27 37.95
variance 0.83 6.76 -1.34 47.76
mean return 0.38 3.46 -5.66 16.82
Panel B: Operating profitability and investment
covariance 0.80 6.60 -1.65 23.43
correlation 0.49 8.82 -9.35 5.23
variance 0.86 6.23 -1.06 28.70
mean return 0.30 3.38 -8.01 9.64
Panel C: Size and beta
covariance 0.99 7.96 -0.10 70.00
correlation 0.98 9.67 -0.20 46.37
variance 1.00 7.39 0.00 70.84%
mean return 0.23 1.27 -4.30 17.63
Panel D: size and momentum
covariance 0.83 7.79 -1.57 34.16
correlation 0.80 16.56 -4.18 37.27
variance 0.84 7.53 -1.39 35.43
mean return 0.69 8.71 -3.84 30.89
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Table 7

Performance with characteristic-sorted portfolios
The out-of-sample performance of the optimized portfolios with different test assets.

The test assets in each panel are 25 double-sorted portfolios on two different charac-

teristics obtained from Kenneth French’s online data library. I use a rolling window of

120 months to estimate moments and correct those based on their historical ability to

forecast out-of-sample moments in the subsequent 12 months. The estimation requires

an additional period of 120 months to start correcting the past OOS errors. In panel

A the test assets are the 25 portfolios sorted on size and book to market; in panel B

the portfolios sorted on operating profitability and investment; in panel C the portfolios

sorted on size and beta; and in panel D the portfolios sorted on size and momentum.

The strategies shown are the 1/N , the historical global minimum variance (‘H-GMV’),

the historical mean variance(‘H-MV’), the constant correlation matrix global minimum

variance (‘EG-GMV’)and mean variance (‘EG-MV’); the Galton-corrected global mini-

mum variance (‘G-GMV’) and mean variance (‘G-MV’). For each strategy and set of test

assets the information shown is the Sharpe ratio, the ex-ante volatility and its ex-post

counterpart. The volatilities are annualized and in percentage points.

Panel A: size and value Panel B: OP and investment
Strategies SR Eσ σexpost SR Eσ σexpost

1/N 0.58 - 16.76 0.58 - 15.51
H-GMV 0.86 10.51 12.97 0.89 10.18 13.54
H-MV -0.11 191.12 516.21 0.68 70.60 28.83
EG-GMV 0.48 7.26 18.37 0.93 7.54 13.84
EG-MV 0.23 94.46 403.40 0.68 152.12 29.84
G-GMV 0.84 9.80 12.35 0.97 11.83 12.71
G-MV 1.01 13.38 16.18 0.98 15.17 16.55

Panel C: size and beta Panel D: size and mom
Strategies SR Eσ σexpost SR Eσ σexpost

1/N 0.59 - 16.92 0.54 - 17.22
H-GMV 0.69 8.01 11.04 0.95 10.29 12.49
H-MV 0.06 117.87 340.01 1.29 35.11 44.44
EG-GMV 0.58 4.85 14.05 0.57 7.90 15.30
EG-MV 0.27 26.09 84.26 0.21 188.10 3611.82
G-GMV 0.70 8.97 10.61 0.95 11.97 11.77
G-MV 0.75 10.42 11.81 1.37 33.01 45.60
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Fig. 1. Historical versus ex post realizations. For each moment in time and
observation (either a stock or a pair of stocks) I compute the value of a variable
in the historical sample - the previous 60 months of observations -and its realized
value in the future -the subsequent 24 months. Then observations are classified
into deciles according to their values in the historical sample each month. For each
combination of month-variable-decile, I compute the mean value in the historical
sample and in the following 24 months. The figure shows, for different variables,
the time series average of the values in each decile of historical and respective ex
post realizations. In panel A and B the observations are pairs of stocks while from
C to H they are the stocks themselves. Panel A shows the historical covariance
versus the ex post realized covariance of the idiosyncratic returns of individual
stocks. The idiosyncratic returns of each stock are estimated regressing the stock
monthly returns on the Fama-French (1992) factors. Panel B shows the same
comparizon for the correlation of idiosyncratic returns. Panels C and D show
the same comparizon for, respectively, the variance of residuals of stocks and the
mean total return of each stock. Panels E to H show the same comparison for the
alphas, and the betas with respect to the market (’RMRF’), the size (’SMB’), and
the value (’HML’) factors respectively. The data consists of monthly observations
from 1955:03 to 2009:12.
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Fig. 2. Historical versus ex post values. For each moment in time and observation
(either a stock or a pair of stocks) I compute the value of a variable in the historical
sample - the previous 60 months of observations -and its respective value in the
future -the subsequent 12 months. Then observations are classified into deciles
according to their values in the historical sample each month. The figure shows, for
different variables, the time series average of the values in each decile of historical
and respective ex post realizations. In panel A and B the observations are pairs of
individual stocks while in C and D they are the stocks themselves. Panel A shows
the historical covariances versus the ex post covariances of the returns of individual
stocks. Panel B shows the same comparizon for the pairwise correlations of returns.
Panels C and D show the same comparizon for, respectively, the variance of stocks
and the mean total return. The data consists of monthly observations from 1955:03
to 2009:12.
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Fig. 3. Minimum variance frontiers in 2009:12. The ex ante minimum-variance
frontiers estimated using the historical and the Galton methods for the 50 largest
stocks by market capitalization in 2009:12. The historical estimate uses the pre-
vious 60 months of returns to estimate the covariance matrix and the vector of
expected returns while the Galton method corrects these estimates using past OOS
errors. Panel A shows the minimum variance frontiers without a risk free asset in
the asset space and the panel B with a risk free asset.
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